Sharp Geometric Maximum Principles for Semi-Elliptic Operators with Singular Drift

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary value problems for elliptic operators with singular drift terms

Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...

متن کامل

Sharp Boundary Estimates for Elliptic Operators

L 2 boundary decay properties of the heat kernel and spectral density. We deduce bounds on the rate of convergence of the eigenvalues when the region is slightly reduced in size. It is remarkable that several of the bounds do not involve the space dimension. AMS subject classifications: 35P99, 35P20, 47A75, 47B25 keywords: boundary decay, Laplacian, Hardy inequality, eigenfunctions, heat kernel...

متن کامل

Symmetry Results for Nonlinear Elliptic Operators with Unbounded Drift

We prove the one-dimensional symmetry of solutions to elliptic equations of the form −div(ea(|∇u|)∇u) = f(u)e, under suitable energy conditions. Our results hold without any restriction on the dimension of the ambient space.

متن کامل

New Maximum Principles for Linear Elliptic Equations

We prove extensions of the estimates of Aleksandrov and Bakel′man for linear elliptic operators in Euclidean space R to inhomogeneous terms in L spaces for q < n. Our estimates depend on restrictions on the ellipticity of the operators determined by certain subcones of the positive cone. We also consider some applications to local pointwise and L estimates.

متن کامل

Maximum principles for elliptic dynamic equations

We consider second order partial dynamic operators of the elliptic type on time scales. We establish basic maximum principles and apply them to obtain the uniqueness of Dirichlet boundary value problems for dynamic elliptic equations, eg Poisson equation. Our special cases include the situation in which several variables are continuous and the other discrete. We conclude with open problems, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2011

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2011.v18.n4.a3